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The desorption of bubbles during solidification of a melt occurs in processes as
diverse as the making of ice cubes, the formation of igneous rocks and the casting of
metals. In both the metal casting and rock formation processes, careful observation of
the final solid suggests that the desorbed bubbles often form regular spatial patterns.
Understanding and quantifying the mechanisms by which such patterns arise is
important. In the geological context, comparison between field measurements and the
predictions of a model will allow geologists to estimate in-situ magma properties. In
the metal casting context, engineers would like to be able to specify mould geometries
and cooling conditions to ensure that the distribution of bubbles will not compromise
the strength of critical sections of the casting.

In the present study, we develop a detailed mathematical model to predict the
distribution of desorbed bubbles in a solidified melt. Our new model builds upon
previous knowledge on this phenomenon in the geological context (Toramaru et al.
1996, 1997). We describe desorption of a dissolved gas in a semi-infinite melt, solidified
by a one-dimensional heat flux. In the absence of convection, the transfer of heat and
solute occurs mainly by a diffusive mechanism and the crystallization proceeds most
rapidly near the cooled boundary. The crystals formed contain almost no dissolved
gas and hence the concentration of gas dissolved in the melt increases progressively
towards the cooled boundary. Diffusion of dissolved gas from the crystallizing zone is
slow and, as a result, the local melt becomes supersaturated and gas bubbles desorb.
The full equations for this coupled solidification and desorption processes are solved
numerically.

We find that bubbles desorb forming a sequence of layers parallel to the cooled
boundary. The spacing between these bubble layers increases geometrically from
the cooled boundary. We give a physical interpretation for this geometric pattern
and analyse the effect of physical parameters on the layer spacing. We show that
our theoretical model captures the important physical mechanisms involved in the
solidification and desorption processes by comparing its predictions with available
measurements from a geological formation.

1. Introduction
The casting of steel is one of the most important industrial processes where

desorption of bubbles occurs (figure 1a). Prior to casting, substantial amounts of
oxygen from the basic oxygen steel-making process can dissolve in the molten metal,
as well as smaller amounts of other gases such as nitrogen or hydrogen. These
dissolved gases can be removed from the molten metal prior to casting by procedures
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(a) (b)

Figure 1. (a) Bubbles of nitrogen desorbed during solidification of a chromium steel ingot (from
Carney 1953). Reprinted with permission from ASM International. (b) Bubble layers in the Ogi
picrite sill (from Toramaru et al. 1996). The spacing between the layers is about 20 cm. Reprinted
with permission from Springer-Verlag.

such as vacuum degassing or reaction with added deoxidizing compounds to form
solid precipitates. However, these procedures must be carefully controlled as without
some bubble desorption during solidification, mould shrinkage can occur (Campbell
1991). Shrinkage of the molten metal within the mould occurs as it solidifies because
of the greater density of solid to molten metal. It can cause the metal to tear away
from the mould walls resulting in a deformed casting. The formation and expansion
of gas bubbles during solidification can offset this shrinkage. It is therefore important
to be able to specify the dissolved gas concentration, based on mould geometry and
cooling conditions, to ensure that the distribution of bubbles in the solid will offset
shrinkage, without compromising the strength of critical sections of the casting.

The desorption of bubbles during the solidification of a melt occurs in many other
processes, from the day to day making of ice cubes to the formation of igneous
rocks. Most of our present knowledge on the mechanism of bubble desorption during
solidification has been developed in the geological context. In certain rock formations,
such as the Ogi picrite sill on the coast of Sado Island, Japan (figure 1b) bubbles were
formed during solidification as water originally dissolved in the molten rock desorbed
in the form of water vapour.

In both the metal casting and rock formation processes described above, careful
observation of the final solid suggests that the desorbed bubbles often form regular
spatial patterns. This is particularly clear in the geological example, where the bubbles
form layers which lie parallel to the cooled boundary and the spacing between the
layers increases in a geometric fashion from the cooled boundary.

Similar periodic patterns have been found in solid precipitate systems where no
solidification takes place. For example, Liesegang rings may be observed by placing
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Figure 2. Liesegang rings, formed when a small crystal of silver nitrate is placed into a dilute
solution of potassium dichromate in gelatin (from McBirney & Noyes 1979). The diameter of the
outer rings is about 5 cm. Reprinted with permission from Oxford University Press.

a crystal of silver nitrate into a dilute solution of potassium dichromate in gelatin.
Concentric rings of precipitated silver chromate are observed to form progressively
from the crystal, the spacing increasing geometrically between each ring (figure 2).
Several theories have been proposed to explain this phenomenon but we shall only
mention here the supersaturation theory of Ostwald as it is relevant to the development
of our model (see for example Stern 1953). Ostwald proposed that the periodicity
arises from the interplay between the diffusion of silver ions from the surface of the
crystal and the diffusion of chromate ions originally dispersed uniformly in the gelatin,
as well as the rate of precipitation. Wagner (1950) modelled this process assuming
that precipitation occurs when the product of the two ionic concentrations exceeds a
certain value, thus forming a mass sink towards which the ions diffuse. His model was
able to predict the geometrical spacing of the layers. The same type of model was used
by McBirney & Noyes (1979) to describe the mechanism by which alternate layers
of precipitates form in igneous rocks. These layers are oriented parallel to the cooled
boundary and the layer spacing increases from this boundary. This suggested that the
layers could have arisen in an analogous manner to Liesegang rings, but from the
interplay between the diffusivities of a dissolved component and of heat. Complete
precipitation of this component was assumed to occur when its concentration was
sufficiently high and the temperature sufficiently low. They were able to show that
their predicted layer spacings were consistent with field measurements. The problem of
bubble desorption during solidification is, however, different from these precipitating
systems, because bubble desorption occurs as a result of concentration enrichment
during solidification (see § 2).

Previous modelling work on bubble desorption during solidification was developed
in analogy to the models for these precipitating systems. Toramaru et al. (1996)
considered the mechanism by which layers of bubbles such as those observed in figure
1(b) were formed. These authors asserted that bubble nucleation occurs at a sufficiently
high concentration of the dissolved gas and a sufficiently low temperature. This model
is based on a scaling analysis and does not couple the processes of concentration
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enrichment and diffusion. The model describes qualitatively the geometric layer
spacing observed in a number of geological formations. However, the effects of fluid
properties and of cooling rate of the patterns of bubble desorption are not considered.

In the present study, we develop a detailed mathematical model to predict the
distribution of desorbed bubbles in a solidified melt. In § 2, we describe the physical
mechanism of bubble desorption during solidification. In § 3, we develop a new model,
which builds upon and extends the scaling analysis of Toramaru et al. (1996, 1997).
A physical interpretation of the patterns of bubbles in the solid and an analysis of
the effect of physical parameters on the layer spacing is given in § 4. In § 5, the new
theoretical model is shown to capture the important physical mechanisms involved in
the solidification and desorption processes by comparing its predictions with available
measurements from a geological formation. Final conclusions on the work are drawn
in § 6.

2. Mechanism of bubble desorption during solidification
Consider the cooling of a multicomponent melt, such as a metal alloy, containing

a dissolved gas, e.g. oxygen, by removing heat from its boundaries to induce solidifi-
cation. Crystals, which contain a smaller fraction of dissolved gas than was present
in the original liquid, will begin to form. During the initial stages of cooling, the melt
convects turbulently, as the Rayleigh number,

Ra =
gξ∆Td3

νκ
, (2.1)

is large owing to the large temperature difference between the cooled boundary and
the melt, ∆T , and the relatively low kinematic viscosity of the melt, ν. Here, g is the
acceleration due to gravity, ξ is the coefficient of thermal expansion of the fluid, d is
the depth of fluid and κ is the thermal diffusivity of the fluid. As cooling proceeds,
the Rayleigh number decreases, mainly as a result of the increasing viscosity due to
the presence of crystals. We shall see later that the transition from fully turbulent
convection to a quiescent regime occurs over very narrow ranges of temperature
and concentration. During the convecting regime, the fluid is well mixed and the
concentration and temperature are both uniform. We assume that a chilled layer of
solid does not form on the cooled boundary during convection. This would be the
case if, for example, the temperature of the boundary is sufficiently high, or convection
sufficiently strong. During the quiescent regime, diffusion is the dominant mechanism
of heat and solute transfer. We assume that once the melt becomes quiescent, the
concentration of dissolved gas is co (figure 3a).

As cooling proceeds, a layer of solid is progressively formed from the top boundary.
As the melt is multicomponent, we assume that ahead of this solid layer is a mushy
zone where the crystal fraction decreases gradually from one to the crystal fraction
in the bulk of the melt (Kurz & Fisher 1986). The concentration of dissolved gas
in the liquid thus increases progressively towards the cooled boundary (figure 3b).
If the diffusion of dissolved gas from the crystallizing zone is sufficiently slow, then
the local melt can become sufficiently supersaturated for gas bubbles to nucleate, say
at concentration c∗ at the local temperature (figure 3c). We assume that the volume
fraction of crystals upon bubble nucleation is sufficiently high that the bubbles are
prevented from subsequent buoyant motion.

Upon bubble nucleation, the concentration of dissolved gas in the melt in contact
with the bubbles is reduced to the saturation concentration at the local temperature
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Figure 3. The periodic desorption of bubbles. (a) The convecting melt becomes stagnant. (b) The
concentration of dissolved gas, c, increases towards the cooled surface because of concentration
enrichment. The shade indicates that the fraction of crystals decreases from the cooled boundary.
(c) The concentration of dissolved gas becomes high enough for gas bubbles to nucleate. The
concentration of dissolved gas in the vicinity is reduced to the saturation concentration at this
temperature. (d) The dissolved gas ahead of the bubbles diffuses back into them creating a region
depleted of dissolved gas. At some later position, another burst of bubble nucleation takes place.
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cs. In § 3, cs is assumed to be lower than co as a result of the concentration enrichment
that took place during the initial convecting stage of the process.

A gradient of dissolved gas concentration thus develops: c varies from cs at the
bubble surface, through a maximum, to co at large distances from the nucleated
bubbles. The dissolved gas will therefore diffuse towards and then into the bubbles.
As a result, a region depleted of dissolved gas grows ahead of the bubbles. The front
of this region initially advances faster than the cooling front because of its closer
proximity to the mass sink – the nucleated bubbles – than to the heat sink – the cooled
boundary. At steady state, no further nucleation can take place until the cooling front
overtakes the gas depletion front. Then a new burst of bubble nucleation will occur
and the process will be repeated (figure 3d).

Subsequent bursts of bubble nucleation will occur further from each other due to
the heat sink becoming further away with each burst whilst the relative position of the
mass sink remains fixed. A pattern of discrete bursts of bubble nucleation may thus
arise. This physical mechanism relies on the establishment of a gradient of dissolved
gas concentration in the melt and diffusion as the dominant transport mechanism.

In the next section, we develop a full mathematical model for the solidification and
desorption processes. The temperature and concentration fields are determined by the
equations for diffusion of heat and the dissolved gas, with source and sink terms to
take into account concentration enrichment and latent heat effects.

3. Modelling
We shall assume that the problem is one-dimensional. This is a good approximation

for bodies of melt which are sufficiently wide compared to their depth. We also assume
that the body is sufficiently deep that the temperature at the bottom remains constant
and equal to the temperature when convection ceased. This is equivalent to considering
sufficiently early stages of the solidification process, when the cooling effect will not
have penetrated to the other side of the body.

3.1. Temperature field

As solidification and bubble nucleation occur, there are changes in latent heat. The
effect of the latent heat of solidification may be taken into account by modifying
the thermal diffusivity in the solidifying region (see Appendix A). Additionally, if
the latent heat of vaporization is sufficiently small compared with the latent heat of
solidification, it may either be neglected or averaged over the entire solidifying region
rather than only at the points of bubble nucleation. This powerful simplification
allows the effect of both latent heats to be accounted for by using a modified thermal
diffusivity, κ1, in the solidifying region (see Appendix A).

In the solidifying region, heat diffusion is therefore governed by Fourier’s law:

∂T

∂t
= κ1

∂2T

∂x2
. (3.1)

We shall set time t = 0 at the moment the melt first becomes quiescent. The
temperature of the melt at this time will be uniform at To:

T = To, x > 0, t = 0, (3.2)

where x is the distance from the cool solid boundary. For simplicity, we assume that
the cooled boundary in contact with the melt remains at the constant temperature
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Tb. However, accounting for the effect of latent heat in the solidifying region requires
the use of a fictitious boundary temperature Ti, related to Tb (see Appendix A):

T = Ti, x = 0, t > 0. (3.3)

No condition is specified at x = 0, t = 0 because of the inherent discontinuity between
the initial condition (3.2) and the near-field boundary condition (3.3).

The far-field boundary condition is

T = To, x→∞, t > 0. (3.4)

The solution of (3.1) with the boundary and initial conditions (3.2)–(3.4) is

T = (To − Ti) erf
[

x
2
√
κ1t

]
+ Ti, x > 0, t > 0, (3.5a)

T = To, x > 0, t = 0. (3.5b)

3.2. Concentration of dissolved gas

Diffusion of dissolved gas through the mushy zone cannot strictly be considered
one-dimensional because of the tortuous paths around the crystals. However, for
simplicity, we retain the assumption of linear diffusion. We also assume that the
chemical diffusivity D is independent of concentration and temperature, and that a
constant average value is representative of diffusion throughout the mushy zone.

Diffusion of the dissolved gas is described by Fick’s law:

∂c

∂t
= D

∂2c

∂x2
+ S, (3.6)

where S is a source term accounting for the increase of the concentration of dissolved
gas at any point in the mushy zone as a result of crystallization. We account
for bubble nucleation separately, as a boundary condition, in the next section. To
determine the rate of change of concentration we consider a closed volume Vo, initially
free of crystals, containing N moles of dissolved gas. We assume no expansion or
contraction on solidification and that the gas is completely insoluble in the solid.
When the melt volume is reduced to V by partial solidification, the volume fraction
of crystals, fc, becomes (1 − V/Vo). At any time, the concentration of dissolved gas
is c = N/V ; hence,

S = N
∂(1/V )

∂t
=

c

1− fc
∂fc

∂t
. (3.7)

The relation between the crystal volume fraction fc and temperature, over an appro-
priate range, is assumed to be described by a linear function:

fc = −αT + β, (3.8)

where α and β are constants.

3.3. Bubble nucleation

As we are considering bubble nucleation within a crystallizing region, the nucleation
of individual bubbles will be predominantly heterogeneous. The concentration and
temperature when such heterogeneous nucleation occurs are often determined by
modifying the classical theory of homogeneous nucleation. This modification com-
prises lowering the melt/gas interfacial tension, γ, to account for the presence of the
lower-energy solid/melt interface (Kurz & Fisher 1986).
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The rate of bubble nucleation J (nuclei per volume per time) is given by (Toramaru
1995)

J =
Dc2

4mπ

√
kBT

γ
(1− (c/cs)

m) exp

{
− 4πγ

3kBT

(
2γ

p((c/cs)−m − 1)

)2}
, (3.9)

where p is the pressure of the melt, kB is Boltzmann’s constant and m is a constant
relating to the gas/melt equilibrium, which has a value of 2 for water as the volatile
component. For many melts and for typical temperature ranges, J is a sufficiently
strong function of c and weak function of T that the range of c over which nucleation
rises from an experimentally negligible level (∼ 1 nucleus cm−3 s−1) to an instantaneous
level (∼ 104 cm−3 s−1) is very narrow and, thus, is effectively independent of the
temperature of the melt (see Appendix B). In this case, the assumption that very
rapid, essentially instantaneous, bubble nucleation occurs at a single concentration
c∗, independent of temperature, is justified.

Once bubble nucleation occurs, the concentration of dissolved gas in that region
is reduced to the saturation concentration cs at the local temperature. Assuming that
there is no kinetic barrier to dissolved gas entering the bubble phase, the concentration
of dissolved gas in contact with the bubbles will remain at cs. Nucleation, therefore,
is treated as a boundary condition reducing c instantaneously to cs and maintaining
it at that value.

At time t = 0, the fluid has just ceased convecting, and so the concentration of
dissolved gas is uniform at co:

c = co, x > 0, t = 0. (3.10)

After the nth burst of bubble nucleation:

c = cs, x = x∗n, t > t∗n, (3.11)

where x∗n and t∗n are the position and time of the previous (nth) burst of bubble
nucleation.

We consider a sufficiently deep body of fluid such that, at any time, the concen-
tration gradient of dissolved gas will not have penetrated far enough to reach the
bottom of the body and hence the far-field boundary condition is

c = co, x→∞, t > 0. (3.12)

Combining (3.6)–(3.8) gives the equation for the concentration of dissolved gas,

∂c

∂t
= D

∂2c

∂x2
− αc

1 + αT − β
∂T

∂t
, (3.13)

with boundary and initial conditions (3.10)–(3.12).

3.4. Solution procedure

We wish to determine the times and positions of bubble nucleation, at which the
concentration of dissolved gas in the melt reaches magnitude c∗. Combining the
equation for concentration (3.13) with that describing temperature (3.5) gives

∂c

∂t
= D

∂2c

∂x2
+
α(To − Tt)

2
√
π

x

t3/2κ
1/2
1

c
exp [−x2/4κ1t]

1 + α(To − Ti) erf [x/(2
√
κ1t)] + αTi − β , (3.14)

with boundary conditions (3.10)–(3.12).
To apply boundary condition (3.11), the position and time of the first burst of
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bubble nucleation, x∗1 and t∗1, must be specified. It is physically reasonable to assume
that the first burst of bubble nucleation should occur at t∗1 = 0, as at this time
the melt becomes quiescent; the bubbles would form at x∗1 = 0, where the melt is
at the solid-boundary temperature. Mathematically, however, it is not possible to
choose either x∗1 or t∗1 as 0. We shall see later that this is due to the fact that the
actual solution tends to a series of geometrically spaced bursts of bubble nucleation,
proceeding from (x, t) = (0, 0); hence, there is an infinite number of such bursts
within an infinitesimally small distance from the cooled boundary. We need therefore
to choose (x∗1, t∗1) 6= (0, 0), and also a physically reasonable concentration profile as
an initial condition at this time. We have found that the choice of x∗1 and t∗1 does
not affect the pattern that the solution settles into after several bursts of bubble
nucleation. We also found that the shape of the initial concentration profile had no
effect on the long-term pattern of desorption. Indeed, the same pattern was obtained
when considering an initial flat concentration profile as well an error function profile.
Hence, for mathematical simplicity, we shall specify a uniform concentration beyond
a non-zero, arbitrary position at an arbitrary time:

c = co, x > x∗1, t = t∗1 where x∗1, t
∗
1 6= 0. (3.15)

Let us introduce the non-dimensional variables

C = c/co, C∗ = c∗/co, Cs = cs/co, (3.16a,b,c)

Xn = x/x∗n, (3.17)

τn = t/t∗n. (3.18)

Here, the length scale following the nth burst of nucleation is the distance from the
heat sink to this burst, x∗n, and the time scale is the time at which this burst occurs, t∗n.

In terms of these new variables, (3.14) may be written

∂C

∂τn
=
D

κ1

η−1
n

∂2C

∂X2
n

+
η

1/2
n

2
√
π

Xn

τ
3/2
n

C
exp [(−X2

n/4τn)ηn]

erf [(Xn/2
√
τn)η

1/2
n ] + φ

, (3.19)

with initial and boundary conditions

C = 1, X1 > 1, τ1 = 1, (3.20)

C = Cs, Xn = 1, τn > 1, (3.21)

C = 1, Xn →∞, τn > 0, (3.22)

where

ηn =
x∗2n
t∗nκ1

, (3.23)

The position and time of the first burst of nucleation are now encapsulated in the
choice of η1.

Equation (3.19) contains two dimensionless groupings of physical constants:

φ =
αTi − β + 1

α(To − Ti) (3.24)

and

Le−1 =
D

κ1

. (3.25)
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Figure 4. Example of a typical concentration profile of dissolved gas between bursts of bubble
nucleation, obtained by numerical solution of (3.19).

Equation (3.19) is a second-order parabolic linear differential equation for which
an analytic solution could not be found. The equation was solved using an explicit
finite difference scheme. The discretizations in space, h, and in time, k, were chosen
such that the coefficient Le−1k/ηnh

2 remained smaller than 1
2
, and hence the solution

remained stable (Smith 1985). The characteristic length scale x∗n and time scale t∗n
increase after each burst of nucleation in such a way that the non-dimensional time
and distance between successive bursts of nucleation remain approximately constant.
The precision of the numerical scheme and the computing time between each burst
of nucleation thus remain the same.

The iterative procedure begins by solving (3.19) for C after the first (n = 1) burst
of nucleation; η1 is chosen arbitrarily and the finite difference scheme is marched
forward in time until at some point in the X domain, C becomes equal to C∗. At this
point, the second burst of nucleation occurs, the concentration C is set immediately
to Cs at this position and the solution following the second burst of nucleation is
calculated: η1 is updated to η2, and the concentration profile at the moment of bubble
nucleation is re-scaled and used as the initial condition, in place of (3.20). The finite
difference scheme is again marched forward in time until the next burst of bubble
nucleation, whereafter the process is repeated. The precision of the solution (as shown
by the error bars in figures 6 and 8–12) was estimated using an uncertainty of ±h
and ±k for x and t, respectively. The convergence of the numerical solution was
confirmed by verifying that the solution using finer space and time discretizations lay
within the precision of the more coarse result.

4. Model results
Typical concentration and temperature profiles between successive bursts of bubble

nucleation are given in figures 4 and 5, respectively. As expected, the concentration of
dissolved gas at the previous burst of bubble nucleation, Xn = 1, is cs. Concentration
enrichment causes the concentration to rise sharply to a peak within the mushy zone
and then decrease gradually to the bulk concentration co as Xn →∞. In contrast, the
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Figure 5. Example of a typical temperature profile between bursts of bubble nucleation (solid line).
The profile within the solidifying region and its extrapolation (dashed line) was obtained using
(3.5a).
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Figure 6. A typical evolution of the layer spacing ratio r as the nucleations proceed. The layer
spacing becomes more geometrical as the number of bursts of bubble nucleation increases.

temperature (solid line) is influenced only by diffusion, and hence rises monotonically
from Tb at the cooled boundary to the bulk temperature To as Xn → ∞. The dashed
line in figure 5 shows the extrapolation of the temperature profile within the solidifying
zone, given by equation (3.5), to define the fictitious boundary temperature Ti (see
Appendix A).

The numerical solution shows that after a number of bursts of bubble nucleation,
both the ratio of the times of formation of successive bubble layers and the ratio
of the distances from the cooled boundary to successive layers become constant.
The number of bursts of bubble nucleation after which the solution converges to
this geometric behaviour is determined by the chosen concentration profile at the
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Figure 7. A schematic illustrating geometrically spaced bubble layers in a solidified melt.
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Figure 8. The predicted variation of the layer spacing ratio r with the parameter Le−1.

first burst of bubble nucleation and the magnitude of η1. A typical evolution of the
layer spacing ratio as the bursts of bubble nucleation proceed is shown in figure 6.
As the number of bursts of bubble nucleation increases, the distance ratio becomes
equal to the square root of the time ratio. This result implies that the spacings
between successive bubble layers increase in a geometric progression from the cooled
boundary, with geometric ratio

r = lim
n→∞

x∗n+1

x∗n
= lim

n→∞

√
t∗n+1

t∗n
. (4.1)

A schematic for this pattern is shown in figure 7.
Since the bubbles are predicted to occur in geometrically spaced layers, the pattern

of bubble desorption can be described in terms of a single parameter, the layer
spacing ratio r. This ratio is therefore a function of the parameters in the model,
i.e. r = r(Le−1, φ, C∗, Cs), and its variation with each of these parameters is plotted
in figures 8, 9, 10 and 11, respectively. Figure 8 shows that as the parameter Le−1

increases (i.e. as the chemical diffusivity, D, increases relative to the thermal diffusivity
κ), the front of dissolved gas depletion can move further from the last site of bubble
nucleation x∗n before it is overtaken by the cooling front to form a new layer of
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Figure 10. The predicted variation of the layer spacing ratio r with the parameter C∗.

bubbles at x∗n+1. Therefore r = limn→∞x∗n+1/x
∗
n increases with Le−1, in accord with our

calculations.
The parameter φ increases when, for example, the temperature difference between

the cooled boundary and the melt (To−Ti) is reduced. The progression of the cooling
front is slowed and hence, by analogy with the process described above, r increases.
This variation is shown in figure 9.

The parameter C∗ increases as the concentration at which bubble nucleation occurs,
c∗, increases relative to the initial concentration co. The concentration of dissolved
gas can only reach this higher c∗ through greater penetration of the cooling front, as
the higher concentration gradient means greater diffusion towards the bubbles. Thus
the progression of the gas depletion front will be accelerated whilst the cooling front
must penetrate further to achieve bubble nucleation. Therefore r will increase with
C∗, as illustrated in figure 10.

Increasing the parameter Cs decreases the driving force for diffusion of the dissolved
gas back towards the last site of bubble nucleation. The progression of the gas
depletion front is thus slowed and as a result r decreases, as shown in figure 11.

In order to gain insight into the reasons that lead to the formation of geometrically
spaced layers of bubbles, let us consider a system without solidification. We consider
the diffusion of solute and heat with no source or sink terms in the diffusion equations
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Figure 11. The predicted variation of the layer spacing ratio r with the parameter Cs.

(3.1) and (3.6). Bubble nucleation is assumed to occur when the temperature reaches
a sufficiently low value T ∗ and the concentration reaches a sufficiently high value c∗.
The non-dimensional position of the point at which T = T ∗ is Xn ∼ √τn and the
position of the point at which c = c∗ is Xn − 1 ∼ √τn − 1. When these two positions
coincide, bubble nucleation occurs. Since this solution (X∗n , τ∗n) is independent of n,
geometric layer spacing arises. A similar argument was first presented by Toramaru
et al. (1996), though those authors recognized, but failed to incorporate, the fixed
position of the heat sink in their scaling analysis (Rogerson & Cardoso 1999).

The model described in this report assumes that only c = c∗, and not T = T ∗,
is a criterion for bubble nucleation. However, our numerical results show that the
concentration of dissolved gas at the point of peak concentration (where nucleation
must occur) remains constant, thus implying that bubble nucleation does always
occur at the same temperature T ∗. Furthermore, the non-dimensional position of the
point at which c = c∗ is independent of n. Therefore, for the range of parameters
studied numerically, we expect a geometric pattern of bubble layering.

5. A physical application
We shall test the validity of our model by comparing its predictions with observa-

tions from a large body of solidified rock, the Ogi picrite sill in Japan. This geological
formation has been described in Toramaru et al. (1996, 1997). A discussion of why
the assumptions of this model are appropriate to this physical case is presented in
Appendix B.

We must first identify the parameters Le−1, φ, C∗ and Cs for this physical situ-
ation. D/κ is estimated to lie between 10−4 and 10−3 (Toramaru et al. 1996). The
incorporation of the effect of latent heat into the thermal diffusivity, that is using
κ1, increases this ratio by a factor of three (see Appendix A). This correction is well
within the uncertainty range given above. We have therefore simply considered the
range 10−4–10−3 for Le−1. The cessation of convection is determined to take place at
fc = 0.60, corresponding to To = 1091 ◦C; Tb is estimated to lie between 850 ◦C and
950 ◦C, and α and β are taken as 0.00605 and 7.2, respectively (see Appendix B). The
parameter φ is then calculated to lie between −0.83 and −0.58. It is assumed that the
magma is saturated with water vapour at emplacement and this water is retained in
the magma during convection, such that Cs is about 0.4.
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Figure 12. The predicted volume fraction of crystals at bubble nucleation in the Ogi picrite sill.
Cs = 0.4.

The final parameter C∗ is difficult to determine because there is insufficient infor-
mation on the initial concentration of dissolved water vapour in the magma. Also,
we do not have a reliable estimate of the gas/melt interfacial tension to allow us
to estimate the concentration of dissolved gas at bubble nucleation using (3.9). We
shall therefore use the field observations in the model to calculate C∗. We know that
a value of C∗ will be reasonable if at nucleation there is a sufficiently large crystal
volume that bubbles could not then move. Otherwise we would not get the distinctive
layers that are observed.

Figure 12 shows the fit of the observed layer spacing ratio of 1.007 in the Ogi
picrite sill (Toramaru et al. 1997) to the model results over the range of interest, and
the predicted crystal volume fraction. The numerical results suggest that both Le−1

and φ must be sufficiently high within their estimated ranges for the model to predict
the layer spacing ratio observed in the field. For Le−1 = 10−3 and φ between −0.58
and −0.74, corresponding to boundary temperatures Tb between 900 ◦C and 950 ◦C,
the model shows that C∗ should have lain within a range corresponding to a crystal
volume fraction in the melt of between 0.67 and 0.76 when bubbles nucleated. The
crystal fraction at which bubbles are unable to move is dependent on the crystal
packing, surface tensions, the size of the bubbles, etc., all of which are not accurately
known. However, Toramaru et al. (1996) suggest that beyond a fractional crystallinity
of about 0.7, bubbles would have been unable to move in the melt. The upper end of
the predicted range is therefore consistent with these limited physical results. Indeed,
the model does not imply a crystal fraction that is too low or implausibly high.
We believe this indicates that the importance features of the physical mechanism of
bubble desorption during solidification have been captured in our model.

6. Conclusions
In this contribution, we have developed a numerical model to describe the patterns

of bubble desorption during the solidification of a multicomponent melt containing



278 M. A. Rogerson and S. S. S. Cardoso

a dissolved gas. Our model considers the one-dimensional cooling of a semi-infinite
body of melt. The interplay among cooling, concentration enrichment and diffusion
is taken into account.

We showed that the time and location of a burst of bubble nucleation are deter-
mined by two competing processes: the advance of the cooling front and the growth of
a region depleted of dissolved gas, which grows ahead of the previous nucleation site.
This interaction results in a discrete desorption pattern: the bubbles form a sequence
of layers parallel to the cooled boundary and the spacing between these bubble layers
increases geometrically from the cooled boundary. Our model predicts the dependence
of the geometric ratio on the ratio of thermal and chemical diffusivities, on the cooling
rate and on the concentration of the dissolved gas at which bubble nucleation occurs.
As the chemical diffusivity is increased, in comparison with the thermal diffusivity, the
front of dissolved gas depletion moves further from the last site of bubble nucleation
before it is overtaken by the cooling front to form a new layer of bubbles, and hence
the geometric ratio increases. When the temperature difference between the cooled
boundary and the melt is reduced, the progression of the cooling front is slowed and,
hence, the geometric ratio increases. As the concentration at which bubble nucleation
occurs increases compared with the initial concentration, the progression of the gas
depletion front will be accelerated whilst the cooling front must penetrate further to
achieve bubble nucleation. Therefore the geometric ratio increases.

We believe that our model captures the important physical mechanisms involved
in the solidification and desorption processes by showing that its predictions are
consistent with available measurements from a geological formation.

Our modelling approach may be readily extended to describe patterns of precipita-
tion of one component from a multi-component mixture. If the concentration of
the component of interest increases as a result of the solidification of lower-melting-
point components, then precipitation by concentration enrichment may occur and the
situation will be analogous to that presented in this paper.

The authors thank Dr John Lister for helpful discussions as well as Professor
Alexander McBirney and Dr Atsushi Toramaru for supplying the reprinted figures.
M.A.R. acknowledges the Cambridge Commonwealth Trust and King’s College,
Cambridge for financial support.

Appendix A. The effect of latent heat
The effect of the latent heat of vaporization, if small, may be taken into account by

averaging it over the solidifying solid. The net latent heat per unit mass of solidifying
solid is then

H = Hsolid −Hvapoure, (A 1)

where Hsolid is the latent heat of solidification, Hvapour is the latent heat of vaporization
and e is the ratio of the mass of gas to that of solid.
H is included in the governing equation for temperature (3.1) as

∂T

∂t
= κ

∂2T

∂x2
+
H

Cp

(
∂fc

∂t

)
, (A 2)

where Cp is the specific heat of the melt and κ is the real thermal diffusivity. Using
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(3.8) yields

∂T

∂t
= κ

∂2T

∂x2
− Hα

Cp

(
∂T

∂t

)
. (A 3)

Hence

∂T

∂t
= κ1

∂2T

∂x2
, (A 4)

where

κ1 =
κ

1 + (Hα/Cp)
. (A 5)

So the effect of the net latent heat H can be expressed by modifying the thermal
diffusivity in the solidifying region.

Within the completely solidified layer, however, the normal thermal diffusivity, κ,
applies. We therefore seek the solution to the problem of heat diffusion within a
body composed of two regions, each with a different thermal diffusivity. The interface
between the regions is a free boundary, characterized by its temperature being the
solidus temperature and there being continuity of heat flux across it. Crank (1984,
pp. 147–149) gives an analytic solution to this problem showing that the temperature
in both regions is described by an error function solution of the form (3.5). In this
work, we are concerned only with the solution within the solidifying region given by
(3.5) with

Ti = To − To − Tm
erfc[ω/(2

√
κ1)]

, (A 6)

where Tm is the solidus temperature of 1025 ◦C; and the constant ω = 1.98 for
Tb = 850 ◦C and 1.16 for Tb = 950 ◦C.

For the case of a basaltic magma solidifying at over 1000 ◦C, water will be exsolved
well above its critical point, leading us to believe that the latent heat of vaporization
will be very low. In addition, for the low concentrations of water typically dissolved
in basalt (e ∼ 0.001), the contribution of the latent heat of vaporization is negligible
compared to that of solidification. Hence, we expect any temperature change caused
by bubble desorption to be very small.

For wet basalt, Hsolid = 4.2 × 105 J kg−1, Cp = 1.3 × 103 J kg−1 K−1 (Huppert &
Sparks 1988a) and α = 0.00605 K−1 (Appendix B) so that

1 + (Hα/Cp) = 3.0. (A 7)

Hence, D/κ should be increased by a factor of three to take into account the effects
of the latent heat of both solidification and vaporization.

Appendix B. Application of the model to solidifying magma
A number of observations from the Ogi Picrite Sill (Toramaru et al. 1996) suggest

that it solidified under conditions similar to those assumed in our model. Indeed,
the measurements of the bubble-layer spacings are from a region of the exposed sill
where bubble layers are planar, indicating that the temperature gradient was one-
dimensional during cooling of that region. The bubbles are observed to have formed
in distinct layers implying that bubble movement after nucleation was prevented. The
bubble layers are geometrically spaced, suggesting that a concentration gradient was
present in the melt and hence convection was negligible. The depth of the exposed
part of the sill is of the order of 100 bubble planes and so the assumption of the



280 M. A. Rogerson and S. S. S. Cardoso

1060

1040

1020

1000

1.3 1.4 1.5 1.6 1.7 1.8 1.9

Instantaneous rate of
bubble nucleation

Negligible rate of
bubble nucleation

C

T (°C)

Figure 13. Comparison of the conditions of temperature and dissolved gas concentration for
which the rate of bubble desorption is experimentally negligible and instantaneous.

sill being infinitely deep is acceptable. The temperature of the surrounding country
rock is described by Toramaru et al. (1996) as being ‘extremely low’. If we take this
temperature as 0 ◦C, then an inferred estimate for the interface temperature at the
cessation of convection, Tb, would be about 600 ◦C if the roof of the sill did not
melt (Huppert & Sparks 1988b). We find that this temperature, however, leads to
an estimate for φ which is too low for the model to be able to predict the field
observations. We therefore speculate that a highly insulating foam of desorbed water
vapour developed at the top of the sill. These bubbles would have formed when the
magma depressurized as it ascended into the sill and buoyancy would cause them to
slowly rise through the viscous magma and form the foam. Indeed, Woods & Cardoso
(1997) have shown that such foam layer can be tens of metres in thickness, with an
thermal conductivity of ∼ 0.1 W m−1 K−1. We find that in this case, Tb could be
maintained at about 900 ◦C during the time required for most of the basalt to solidify.
We therefore present numerical results for estimates of the boundary temperature Tb
of 850 ◦C, 900 ◦C and 950 ◦C. We also believe that the foam would prevent a chilled
layer of basalt forming at the top of the sill before convection ceased. The soft layer
of foam would not allow crystals to remain attached and they would be entrained
into the bulk by the convective currents. The relationship between the volume crystal
fraction and temperature for a basaltic magma is given by Huppert & Sparks (1988a)
as fc = 7200T−1 − 6 for 1091 ◦C 6 T 6 1200 ◦C. Neglecting terms higher than first
order in a Taylor expansion about T = 1091 ◦C gives fc = −0.00605T + 7.2. We
extrapolate this relationship to complete solidification at Tm = 1025 ◦C.
To is taken as the temperature at which the melt undergoes the transition from

being quiescent (Ra < 103) to turbulently convecting (Ra > 106). Using (2.1) with
∆T = T −Tb, d = 40 m (Toramaru et al. 1996), κ = 8× 10−7 m2 s−1, ξ = 5× 10−5 K−1

and ν = 0.1(1 − 1.67fc)
−2.5 m2 s−1 for a basaltic magma (Huppert & Sparks 1988a),

gives the results in table 1. Over a range of Tb, the transition between the quiescent
and turbulently convecting regimes will be quite sharp at fc = 0.60 and To = 1091 ◦C.
Then φ = (αTi − β + 1)/[α(To − Ti)] varies from −0.83 for Tb = 850 ◦C, −0.74
for Tb = 900 ◦C to −0.58 for Tb = 950 ◦C. Here Ti was calculated as described in
Appendix A.

The thermal diffusivities for molten and solid rock are comparable, justifying
assuming a single actual thermal diffusivity for melt and solid (Turner, Huppert &
Sparks 1986). The effect of using a single average chemical diffusivity and linear
diffusion within the crystallizing zone is assumed to be negligible. It is assumed
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Ra: 103 106

Tb = 850 ◦C fc = 0.60 fc = 0.59
T = 1091.2 ◦C T = 1092.1 ◦C

Tb = 900 ◦C fc = 0.60 fc = 0.59
T = 1091.2 ◦C T = 1092.2 ◦C

Tb = 950 ◦C fc = 0.60 fc = 0.59
T = 1091.2 ◦C T = 1092.3 ◦C

Table 1. Variation of the temperature and volume fraction of crystals in a basaltic magma during
the transition from a quiescent regime (Ra < 103) to a fully turbulent, convective regime (Ra > 106).
The insensitivity to Tb is also shown.

that the gas is negligibly soluble in the solid and the effect of volume change on
solidification or bubble nucleation is negligible.

The assumption of instantaneous nucleation at a constant concentration, indepen-
dent of temperature, is justified by plotting the nucleation rate predicted by (3.9) as
a function of the concentration and temperature of a basaltic magma. We use ap-
proximate saturation data of cs = 0.1× 1027 molecules m−3 (c = 0.1%) at p = 10 atm,
which is assumed to be independent of temperature. A rough estimate of γ for hetero-
geneous bubble nucleation is 0.005 N m−1 (Sparks 1978) and the chemical diffusivity,
D, of dissolved water vapour is about 10−10 m2 s−1 (Toramaru et al. 1996). The effect
of concentration and temperature on the rate of bubble nucleation J (equation (3.9))
are shown in figure 13. The contours of J corresponding to negligible (−1 nucleus
cm−3 s−1) and instantaneous (104 cm−3 s−1) rates of bubble nucleation are closely
spaced, indicating that C∗ (taking co = 0.1× 1027 molecules m−3 as mentioned above)
varies only between 1.52 and 1.6 over the temperature range 1000 ◦C–1080 ◦C.
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